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Motivation

» Many lattice-QCD calculations are now reaching a precision for which
electromagnetic (EM) and isospin-breaking effects may enter near the level of
current lattice uncertainties.
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QCD + QED action
In the continuum, the QCD Lagrangian density (in Minkowski space) for one
spin-1/2 field without interacting with the EM field is

1

Laco = Lacps + Lacp; = ZJ){(I'%D,;” — M"Yy — G.,Gy. (1)
1

4g°2
The Euclidean QCD + QED Lagrangian density is
~f f N 1 v 1 v
L:Z¢,(7MD0“+M)@Z)/+4—QZGZVG§ +4—62FWF“ ; 2)
with
Dj, =8, + iAu(x) + iq" Al (%), (3)
q' =2/3 foruquark, e~ +/4r/137, (4)
Gl =0uAL(X) — DL AL(X) + Tabc AL (X)AL(X), (5)
F =0,A,(x) — 8,,A;(X). (6)
The QCD + QED action becomes
S= / dx*L = Sr + Seyep + Scaen- (7)
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QCD + QED action

>

The lattice QCD (SU(3)) gauge action Sg,,,,, is a function of

» the link variable U,,(n) = e”»(" and the QCD coupling g.

The lattice QED (U(1)) gauge action Sg,,, is a function of

> the link variable U/9(n) = 94:(" for compact QED;

or

> the real valued vector potential of an EM field A}, (x) for non-compact QED.

and

» the QED coupling e.

The lattice fermion action Sg is a function of

» the link variables U, (n) and U[ﬂ(n) (i. e., SF has both SU(3) and U(1)
components).
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QCD + QED action

» The naive QCD+QED lattice fermion action is
SEEYe = " DMUMo (y), (8)
x.y
where v(x) is the charged spin 1/2 particle field.

> The staggered fermion classical Hamiltonian is obtained by changing the ¥ (x)
field to the staggered field x(x), introducing the pseudo-fermion filed ®(on even
sites only) and the canonical momentum h and A’ conjugate to A, and A/,

1 1
H[OL AU U g, 6] = Z Ehiz + Z Eh/iz + Spr + Sagep T Saep+ (9)
! !

» The staggered pseudo-fermion action with n; degenerate fermion flavors is

Spr = <¢ [/\/ﬁ[ue"f]M[ue”]]7"”4 ¢>, (10)

M.y [Ueff] = 2méx,y+Dx,y [Uef’] =2méxy+> xu (Uf,%x,yw - Uxeﬂ,u‘;x,yw) :
"

(11)
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Non-compact QED

» The non-compact U(1) lattice gauge action is defined as

NC
SGOED( u( 462 ; (12)
ez > FRm =30 30 FhL), (13)
nu<v nu<v

with

Fuv(n) = [AL(n) + AL (n+ p) — A, (n+ 2) — A, (n)]. (14)
» The U(1) momentum is defined via
/q .

W) i, (n)gf Ua() = iH3(n) U (), (15)

with
Uy3(n) =€, (16)
H'9,(n) =h,,(n)q'. (17)

Since A’ (n) = . (n), h;,(n) is a conjugate field to A’,,(n), we can consider
A',.(n) as coordinate and hy,(n) as momentum conjugate to the corresponding

coordinate.
» The kinetic part of the Hamiltonian can then be written as
2 1
Z ha(n) = oa? D [H9u(n)?]. (18)
n,u 2q n,u
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Non-compact QED: gauge force

» U(1) gauge field update:
Since A’,,(n) = W ,(n), the A’ should be updated according to
A = A+ Hdr. (19)

» U(1) momentum update:
The U(1) gauge force contributing to the U(1) momentum change is

NC
an  9Sg.,

dr  dA

(20)
with

0SGen /A (1 )—72 (1AL () + A (04 ) = A0+ v) = A ()]

- [AL(n— v)+ A (n—v+p) = AL (n) — A (n—v)]],
(21)
(

fﬂmzv_ﬁw — Fuv(n—v)]. 22)
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Fermion forces

» The fermion force has contributions from both SU(3) and U(1).

» Taking the MC simulation time 7 derivative of the Hamiltonian and requring it to be
zero, one gets the SU(3) and U(1) fermion forces.

» The SU(3) contribution (QCD force) is

. oS oS
iH(n) = |Uun)———-—"——Ul(n
(1) [ W) S~ 507 M )}
1 oS oS
——Tr|Uu(n Ul (n 23
N {u()auu() RO, ()} (23)
oS
= 2|um o] (24)
" oUL(n) | 4
where the operation AT stands for taking the anti-Hermitian and traceless part of

the matrix )

Myr = %(M — M — an, M - M. (25)
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Fermion forces

» The fermion force has contributions from both SU(3) and U(1).

» Taking the MC simulation time 7 derivative of the Hamiltonian and requring it to be
zero, one gets the SU(3) and U(1) fermion forces.

» The U(1) contribution (QED force) is

i () = quTr[ atfs(n) aU8T o )} “
or h’u(n) _ 22 qumTr [Uu(n)i} . (27)
7 OUu(n)

> In Egs. (23, 24, 26, and 27), U,.(n) is the product of SU(3) U, (n) and U(1) U;ﬁ(n).
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Pure gauge U(1) test

» The pure gauge U(1) Hamiltonian is

H[A/; e] _ Z %h,iz + SNC
i

Goep*

(28)

» The non-compact U(1) gauge action SggED is only a function of the dimensionality

d and lattice volume V on the finite periodic lattice

» One can use this to check the correctness of the pure gauge U(1) code.

Staen/ (d=1)(V =1)/2)

1.0010

ghe _ (d—1)(V—1).

Gaep —

2

1.0005 |-
1.0000 |

0.9995 [

0.9990 L

expected

[ measured —e—

0.15

(29)
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U(1) with fermions test

» The U(1) with fermion Hamiltonian is

1
H[OF A U el =3 oh* + Spr + SEC, (30)
i

Goep

» Time history of the U(1) gauge action
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SU(3) with fermions test

» The SU(3) with fermion Hamiltonian is

1
H[OL A U9 e =D Ehiz + Spr + Sagep- (31)
i

» Time history of the SU(3) Plaquette
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SU(3) + U(1) with fermions test

» The SU(3) + U(1) with fermion Hamiltonian is

1 1
HIOGA U el =3 ohP+ > 5’7’;2 + SpF + Segep- + Ste., (32)
i i

» Time history of the SU(3) Plaquette
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Integration algorithms

>

The integration algorithm is based on decomposing the Hamiltonian in exactly
integrable pieces
H(¢, h) = Hi(¢) + Ha(h), (33)

with Hy (¢) = S(¢) and Ha(h) = 3=; h? /2 for example.
The algorithm consists of repeated applying the following two elementary steps

h(€) :(h, ) — (h, ¢ + eVH(h)), (34)
k(€) :(h, ¢) = (h— eV S(8), ¢). (35)
The leap-frog algorithm corresponds to the following updates

le(r) = [h(e/2) () (e/2)]" (36)

with 7 = Nse the length of the trajectory. The leading violation due to the finite
step-size € is O(e?).

The Omelyan integrator
[h (&) la(e/2)h (1 — 2€)e)la(e/2)h (€)™ (37)
reduces the coefficient of the €2 term and improves the scaling behavior.

In the MILC code for the HISQ fermion related calculations, an Omelyan based
“8G1F” integrator is used.

The algorithm can be made exact by a Metropolis acceptance step: Hybrid Monte
Carlo algorithm.
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SU(3) + U(1) with fermions test

» The change of the Hamiltonian during the trajectory is expected to scale with €2
for the integrators used.

» Scaling of the the change of action | AH| with the step sizes e. The upper blue
points are from the leap-frog integrator and the lower red points are from the
“3G1F” integrator.

|AH]

4

0.03
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SU(3) + U(1) with fermions test
» The change of the Hamiltonian during the trajectory is expected to scale with €2
for the integrators used.

» Scaling of the SU(3) Plaquette with the step sizes e. The upper blue points are
from the leap-frog integrator and the lower red points are from the “3G1F”

integrator.
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SU(3) + U(1) with fermions test

» In principle, the Hybrid Monte Carlo algorithm can be run at any step size. The

acceptance rate depends on the step sizes.

» Dependence of the acceptance rate as a function of the step-size €
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Summary

\4

Lattice QCD + QED code for staggered fermion HISQ action now exists.

v

The code has been tested and compared with theoretical expectations.

» It is currently based on the MILC code and runs efficiently on conventional CPUs.

\{

Parts of the code can be run on GPUs and Intel Xeon Phi processors.

v

Exascale MILC code projects are ongoing.
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Thank You!
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BACKUP
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Appendix: Non-compact U(1) analytic results
» The partition function of the non-compact U(1) gauge action is

z- / [0, (m)]eCazo (38)

» The density of state is

- / (oA, ()] ( S F2 @m) , (39)

nu<v

where E is the average “energy” in a d-dimensional lattice. It is defined as

st =20 s B =5, 20 Vg (40)

GOED
nu<v

» Sine the gauge group is non-compact, the above density of state is divergent
even on a finite lattice. One can factorize the divergent part by multiplying the
integrand with a Gaussian factor (i.e., introducing a photon mass term)

npu<v 2

NEm = [ [dAL(n)lé[ S R, () - YDy | o S Al
(41)
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Appendix: Non-compact U(1) analytic results

» The gauge action is quadratic and can be diagonalized via a unitary
transformation. The number of zero modes of the quadratic form is

Z0=V+d-—1. (42)

» The density of state can then be written as
dV—2zy

-/ 11 dBnd{ 3 M - L )VE} (432)
x[Je "5 (/ dBe‘MZB) o (43b)

The integrations in Eq. (43b) are Gaussian: [__*° et — | /7 /aand contain all
the divergence as M — 0. The factor in Eq. (43a) is finite.
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Appendix: Non-compact U(1) analytic results

» Using the hyper-spherical coordinates in (dV — zy)-dimensional space, one can
integrate over Eq. (43a) and get the density of state. Specifically, changing the

variables By to rcos 6y, - - -

dvV—2zy

/ [T oBns
n=1
c /dr"—‘a [ A,

CilyRE (1~ &)

1 d(d — 1
EZA,,BE—%VE :
n

with
n = dV-—z,
d(d—1)

R = ——=VE.
2

Note that when n = dV — Zzj is even, the above integral is 0.

» The density of state is then
adV—zy _

N(E)=CE—=z .

(44a)

(44b)

(44c)

(45)
(46)

(47)
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Appendix: Non-compact U(1) analytic results

» Now we have the analytic functional form of the density of state Eq. (47). The
partition function is now a one-dimensional integral

7 = /0 dEN(E)e~ " " VE (48)
- c/deEdez°—1e—ﬁu1@VE (49)

0
= ¢ / JEE3¢—bE (50)

0
= ¢b ' (1 + a). (51)

with
_ dV2—Zo_17 (52)
d(d — 1

b — gmv%. (53)

Again the divergence of Z is contained in the constant C.
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Appendix: Non-compact U(1) analytic results

» The average Plaquette energy E is then

< E

fo dEN(E) Ee—ﬁu1

Jo< dEN(E)e e fn

_ Cfo dEEa+1 e—bE

= CJy° dEEae-bE
11(2+a)

“br(1+a)

_a+t

b
1 dV—Zo

" Bur d(d— 1)V
1 (d=1)V-—d+1

TBu dd-1)V
1 V-1

s

(54)

(55)

(56)

(57)

(58)

(59)

(60)

From Eq. (60), we can see that 8,1 (E) only depends on the dimensionality d and

the volume V.
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